Huber Loss

[!def] Huber Loss Formula
$$
\begin{equation}
L =
\begin{cases}
\frac{1}{2} (y - \hat{y})^2, & \text{if } |y-\hat{y}| \leq \delta \\ > \delta |y - \hat{y}| - \frac{1}{2} \delta^2, & \text{otherwise}
\end{cases}
\end{equation}
$$

Pros

  1. Differentiable at 0
  2. good at Handling Outliers
  3. The hyperparameter $\delta$ can be tuned to maximize model accuracy

Cons

  1. Additional conditions make it computationally expensive
  2. Differentiable only once